994 resultados para micelle-forming polymer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the objective of obtaining slow-acting isoniazid derivatives, of potential use as chemoprophylactics or chemotherapeutics in tuberculosis, the micelle-forming copolymer of poly(ethylene glycol)-poly(aspartic acid) prodrug with isoniazid was synthesized. The derivative obtained was found to be active in Mycobacterium Il(tuberculosis culture, with a minimal inhibitory concentration (MIC) 5.6 times lower than that of the tuberculostatic drug.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrazinamide was condensed with the poly(ethylene glycol)-poly(aspartic acid) copolymer (PEG-PASP), a micelle-forming derivative was obtained that was characterized in terms of its critical micelle concentration (CMC) and micelle diameter. The CMC was found by observing the solubility of Sudan III in Poly(ethylene glycol)-poly(pyrazinamidomethyl aspartate) copolymer (PEG-PASP-PZA) solutions. The mean diameter of PEG-PASP-PZA micelles, obtained by analyzing the dynamic light-scattering data, was 78.2 nm. The PEG-PASP-PZA derivative, when assayed for anti-Mycobacterium activity, exhibited stronger activity than the simple drug.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macromolecular assembly of block copolymers into numerous nanostructures resembles self-organization of proteins and cellular components found in nature. In order to mimic nature’s assemblies either to cure a disease or construct functional devices, the organization principles underpinning the emergence of complex shapes need to be understood. In the same vein, this study aimed at understanding morphology evolution in a triblock copolymer blend in aqueous solution. An ABA type amphiphilic triblock copolymer (polystyrene-b-polyethylene oxide-b-polystyrene, PS-b-PEO-b-PS) was synthesized at different compositions via atom transfer radical polymerization (ATRP) and self-assembly behavior of a binary mixture in aqueous solution was studied. Block copolymers that form worms and vesicles in its pristine state was shown to form complex morphologies such as fused rings, “jellyfish”, toroid vesicles, large compound vesicles and large lamellae after blending. The tendency of vesicle-forming block copolymer to form bilayers may be responsible for triggering complex morphologies when mixed with a worm or micelle-forming polymer. In other words, the interplay between curvature effects produced by two distinct polymers with different hydrophobic block lengths results in complex morphologies due to chain segregation within the nanostructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges oil larger units in the polymer chain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the interplay between microphase assembly and macrophase separation in A/B/AB ternary polymer blends by examining the free energy of localized fluctuation structures (micelles or droplets), with emphasis on the thermodynamic relationship between swollen micelles (microemulsion) and the macrophase-separated state, using self-consistent field theory and an extended capillary model. Upon introducing homopolymer B into a micelle-forming binary polymer blend A/AB, micelles can be swollen by B. A small amount of component B (below the A-rich binodal of macrophase coexistence) will not affect the stability of the swollen micelles. A large excess of homopolymer, B, will induce a microemulsion failure and lead to a macrophase separation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A field trial was undertaken to determine the influence of four commercially available film-forming polymers (Bond [alkyl phenyl hydroxyl polyoxyethylene], Newman Crop Spray 11E™ [paraffinic oil], Nu-Film P [poly-1-p menthene], and Spray Gard [di-1-p menthene]) on reducing salt spray injury on two woody species, evergreen oak (Quercus ilex L.) and laurel (Prunus laurocerasus L.). Irrespective of species, the film-forming polymers Nu-Film-P and Spay Gard did not provide any significant degree of protection against salt spray damage irrespective of concentration (1% or 2%) applied as measured by leaf chlorophyll concentrations, photosynthetic efficiency, visual leaf necrosis, foliar sodium and chloride content, and growth (height, leaf area). The film-forming polymer Newman Crop Spray 11E™ provided only 1-week protection against salt spray injury. The film-forming polymer Bond provided a significant (P < 0.05) degree of protection against salt spray injury 3 months after application as manifest by higher leaf chlorophyll content, photosynthetic efficiency, height and leaf area, and lower visual leaf necrosis and foliar Na and Cl content compared with nontreated controls. In conclusion, results indicate that application of a suitable film-forming polymer can provide a significant degree of protection of up to 3 months against salt spray injury in evergreen oak and laurel. Results also indicate that when applied at 1% or 2% solutions, no problems associated with phytotoxicity and rapid degradation on the leaf surface exist.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A detached leaf bioassay was used to determine the influence of several film forming polymers and a conventional triazole fungicide on apple scab (Venturia inaequalis (Cooke) G. Wint.) development under laboratory in vitro conditions, supported by two field trials using established apple cv. Golden Delicious to further assess the efficacy of foliar applied film forming polymers as scab protectant compounds. All film forming polymers used in this investigation (Bond, Designer, Nu-Film P, Spray Gard, Moisturin, Companion PCT12) inhibited germination of conidia, subsequent formation of appressoria and reduced leaf scab severity using a detached leaf bioassay. Regardless of treatment, there were no obvious trends in the percentage of conidia with one to four appressoria 5 days after inoculation. The synthetic fungicide penconazole resulted in the greatest levels of germination inhibition, appressorium development and least leaf scab severity. Under field conditions, scab severity on leaves and fruit of apple cv. Golden Delicious treated with a film forming polymer (Bond, Spray Gard, Moisturin) was less than on untreated controls. However, greatest protection in both field trials was provided by the synthetic fungicide penconazole. Higher chlorophyll fluorescence Fv/Fm emissions in polymer and penconazole treated trees indicated less damage to the leaf photosynthetic system as a result of fungal invasion. In addition, higher SPAD values as measures of leaf chlorophyll content were recorded in polymer and penconazole treated trees. Application of a film forming polymer or penconazole resulted in a higher apple yield per tree at harvest in both the 2005 and 2006 field trials compared to untreated controls. Results suggest application of an appropriate film forming polymer may provide a useful addition to existing methods of apple scab management. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: This paper focuses on the characterization of polymeric micelle-forming tuberculostatic prodrugs and the antimycobacterial activity of these prodrugs.Method: By the condensation of hydroxymethylpyrazinamide, isoniazid and rifampin with free carboxyl groups on the copolymer poly(ethyleneglycol)-poly(aspartic acid), micelle-forming carrier-drug conjugates were obtained. These micelles were characterized by dynamic light scattering, to measure the micelle diameter; by acid-base titration, to determine the percentage of carboxylic groups occupied by the tuberculostatic; by Sudan III solubility tests, to estimate the critical micelle concentration (CMC); and visual control and spectrophotometric measurement, to determine the stability of micelles. These micelles were tested in vitro against several Mycobacterium strains.Results: As expected, the size and distribution of the micelle-forming tuberculostatic prodrugs found to be small (78.2nm, 84.2nm and 98.9 nm) while the level of the drug conjugated was high (65.02-85.7%). Furthermore, the micelles were stable in vitro, exhibiting a low level of CMC and stronger antimycobacterial activity than the original drugs.Conclusion: the results demonstrate that polymeric micelles can be used as efficient carriers for drugs, which alone, exhibit undesired pharmacokinetics, poor solubility, and low stability. The synthesized micelle-forming tuberculostatic prodrugs opens a perspective of alternative prodrugs that prolong action and decrease the toxicity of the tuberculostatic drugs of choice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated the effect of mixing spontaneously formed dispersions of the cationic vesicle-forming dioctadecyldimethylammonium chloride and bromide (DODAX, with X being anions Cl- (C) or Br- (B)) with solutions of the micelle-forming nonionic ethylene oxide surfactants penta-, hepta-, and octaethyleneglycol mono-n-dodecyl ether, C12En (n = 5, 7, and 8), and the zwitterionic 3-(N-hexadecyl-N,N-dimethylammonio)propane sulfonate (HPS). We used for this purpose differential scanning calorimetry (DSC), turbidity, and steady-state fluorescence spectroscopy to investigate the vesicle-micelle (V-M) transition yielded by adding C12En and HPS to 1.0 mM vesicle dispersions of DODAC and DODAB. The addition of these surfactants lowers the gel-to-liquid crystalline phase transition temperature (T-m) of DODAC and DODAB, and the transition becomes less cooperative, that is, the thermogram transition peak shifts to lower temperature and broadens to disappear when the V-M transition is complete, the vesicle bilayer becomes less organized, and the T., decreases, in agreement with measurements of the fluorescence quantum yield of trans-diphenylpolyene (t-DPO) fluorescence molecules incorporated in the vesicle bilayer. Turbidity data indicate that the V-M transition comes about in three stages: first surfactants are solubilized into the vesicle bilayer; after saturation, the vesicles are ruptured, and, finally, the vesicles are completely solubilized and only mixed micelles are formed. The critical points of bilayer saturation and vesicle solubilization were obtained from the turbidity and fluorescence curves, and are reported in this communication. The solubility of DODAX is stronger for C12En than it is for HPS, meaning that C12En solubilizes DODAX more efficiently than does HPS. The surfactant solubilization depends slightly on the counterion, and varies according to the sequence C12E5 > C12E7 > C12E8 > HPS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The preparation of nonaqueous microemulsions using food-acceptable components is reported. The effect of oil on the formation of microemulsions stabilized by lecithin (Epikuron 200) and containing propylene glycol as immiscible solvent was investigated. When the triglycerides were used as oil, three types of phase behavior were noted, namely, a two-phase cloudy region (occurring at low lecithin concentrations), a liquid crystalline (LC) phase (occurring at high surfactant and low oil concentrations), and a clear monophasic microemulsion region. The extent of this clear one-phase region was found to be dependent upon the molecular volume of the oil being solubilized. Large molecular volume oils, such as soybean and sunflower oils, produced a small microemulsion region, whereas the smallest molecular volume triglyceride, tributyrin, produced a large, clear monophasic region. Use of the ethyl ester, ethyl oleate, as oil produced a clear, monophasic region of a size comparable to that seen with tributyrin. Substitution of some of the propylene glycol with water greatly reduced the extent of the clear one-phase region and increased the extent of the liquid crystalline region. In contrast, ethanol enhanced the clear, monophasic region by decreasing the LC phase. Replacement of some of the lecithin with the micelle-forming nonionic surfactant Tween 80 to produce mixed lecithin/Tween 80 mixtures of weight ratios (Km) 1:2 and 1:3 did not significantly alter the phase behavior, although there was a marginal increase in the area of the two-phase, cloudy region of the phase diagram. The use of the lower phosphatidylcholine content lecithin, Epikuron 170, in place of Epikuron 200 resulted in a reduction in the LC region for all of the systems investigated. In conclusion, these studies show that it is possible to prepare one-phase, clear lecithin-based microemulsions over a wide range of compositions using components that are food-acceptable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of the micelle-forming surfactant series alkyltrimethylammonium bromide (C(n)TAB, n = 12, 14, 16 and 18) on the thermotropic phase behavior of dioctadecyldimethylammonium bromide (DODAB) vesicles in water was investigated by differential scanning calorimetry at constant 5.0 mM total surfactant concentration and varying individual surfactant concentrations. The pre-, post- and main transition temperatures (T-s, T-p and T-m), melting enthalpy (Delta H) and peak width of the main transition (Delta T-1/2) are reported as a function of the surfactant molar fraction. No clear dependence of these parameters on the C(n)TAB chain length was found. At 5 mM, neat DODAB in water exhibits two transition temperatures, T-s = 32.1 and T-m = 42.7 degrees C, as obtained from the DSC upscans, but not a clear T-p. For every n, except n = 12, T-s vanishes as CnTAB concentration increases and approaches CMC. T-m behaves differently for different n, the longer C(14)TAB and C(16)TAB decrease, while C(18)TAB increases T-m with increasing concentration. The data indicate that changes in T-m, T-s, T-p and Delta H of the transition are related not only to the extent of C(n)TAB affinity to DODAB but also to the surfactant chain length. Accordingly, C18TAB yields a more compact bilayer, thus increasing T-m, while C(14)TAB and C(1G)TAB yield a less organized bilayer and reduce T-m. C(12)TAB does not much affect T-s and T-m, although it yields T-p approximate to 51.6 degrees C. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dioctadecyldimethylammonium bromide (DODAB) is a double chain vesicle-forming cationic surfactant, whereas octa-ethyleneglycol mono-n-dodecyl ether (C12E8) is a single chain micelle-forming nonionic surfactant. At room temperature (ca. 22 degrees C) C12E8 molecules self-assemble in water as micelles while DODAB is insoluble. A mixture of DODAB and C12E8, however, can be soluble in water at room temperature depending on the relative amount of the compounds. We report the formation of small unilamellar vesicles (SUVs) by dialyzing at room temperature a mixture of 1.0 mM DODAB with 10 mM C12E8 in water. Extended bilayers are formed as well in equilibrium with vesicles. Such structures are viewed by a cryogenic transmission electron microscopy (cryo-TEM) image. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Biofísica Molecular - IBILCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Der Fokus dieser Arbeit lag in der Synthese von funktionellen HPMA-Copolymeren, sowohl für die Darstellung definierter Polymer-Antikörper Konjugate, als auch zum effizienten Transport von p-DNA in Polymer-DNA Komplexen (Polyplexe). Nach ausführlicher physikalischer und chemischer Charakterisierung wurden gezielt ihre Wechselwirkungen mit (Immun)-Zellen untersucht und so ihr Potential für die Verwendung in der Tumor-Immuntherapie aufgezeigt.rnFür das gezielte Ansprechen von bestimmten Immunzellen mit Schlüsselfunktionen besitzen monoklonale Antikörper ein großes Potential. Im Rahmen dieser Arbeit gelang die Darstellung definierter Polymer-Antikörper Konjugate über das gezielte Einführen von Thiol-Gruppen an Antikörper und die Synthese eng verteilter, Maleinimid funktionalisierter HPMA-Copolymere. Diese sehr gut definierten, funktionellen HPMA-Copolymere konnten über die Kombination der RAFT-Polymerisation und Reaktivester Polymeren gewonnen werden. Unterschiedliche Polymerstrukturen ermöglichten die Synthese verschiedener Arten von Polymer-Antikörper Konjugaten. Speziell die Untersuchung der verschiedenen Konjugate aus dem für dendritische Zellen spezifischen aDEC-205 Antikörper an Immunzellen aus dem Knochenmark von Mäusen lieferten wertvolle Erkenntnisse über Struktur-Wirkungsbeziehungen und zeigten die Möglichkeit der gezielten Adressierung von Immunzellen mit Schlüsselfunktionen bei der Aktivierung einer (Tumor)-Immunabwehr am Beispiel von dendritischen Zellen. Gleichzeitig erlaubt der Syntheseweg sowohl die gleichzeitige und kontrollierte Einführung auch komplexerer Stimuli am Polymerrückgrat als auch die Verwendung verschiedener Antikörper.rnÜber die Kombination der RAFT-Polymerisation und polymeren Reaktivestern wurde ebenso die Synthese von neuartigen kationisch-hydrophilen Polylysin-b-poly(HPMA) Blockcopolymeren als effiziente Transporter für den komplexen aber wirkungsvollen Wirkstoff p-DNA in Form von Polymer-DNA Komplexen (Polyplexe) realisiert. Da diese Polyplexe gleichzeitig eine Abschirmung der sensitiven p-DNA über eine poly(HPMA)-Korona vermitteln, stellen sie allgemein ein geeignetes Transportmittel für einen therapeutischen Transport von p-DNA dar. Diese Polyplexe sind in der Lage, humane Nierenkarzinomzellen (HEK-293T Zelllinie) zu transfizieren ohne signifikante Zytotoxizität zu zeigen. Darüber hinaus gelang eine große Steigerung der Transfektionseffizienz, ohne eine gleichzeitige Erhöhung der Zytotoxizität, durch die gezielte Einführung von Redox-stimuliresponsiven Disulfid-Gruppen zwischen den einzelnen Blöcken. Diese Polyplexe stellen einen polymeren Vektor zur transkriptionellen Regulierung von Zellen dar, zum Beispiel für die transkriptionelle Aktivierung von dendritischen Zellen, durch die Verwendung speziell dafür modifizierter p-DNA-Konstrukte. rnDurch die Verknüpfung einer ortsspezifischen enzymatischen Kopplung und kupferfreien Cyclooctin-Azid Kupplung gelang die kontrollierte und kovalente Modifizierung von polymeren Mizellen mit aDEC-205 Antikörpern an der hydrophilen poly(HPMA)-Korona. Diese Methode bietet die Möglichkeit der Anbindung der effektiven aber anspruchsvollen Erkennungsstruktur Antikörper an komplexere Polymerstrukturen und andere nano-partikulären Systeme, zum Beispiel an die zuvor genannten Polyplexe, um eine zellspezifische und verbesserte Aufnahme und Prozessierung zu erreichen.rnDiese Studien zeigen somit, sowohl die Möglichkeit der selektiven Addressierung von Immunzellen mit Schlüsselfunktionen wie dendritischer Zellen, als auch die Möglichkeit der transkriptionellen Regulation von Zellen durch Polyplexe. Sie stellen somit einen ersten Schritt zur Herstellung funktioneller, nanopartikulärer Systeme zur Verwendung in der Tumor-Immuntherapie dar. rn